${ }^{\text {a }}$ Department of Chemistry, Jadavpur University, Kolkata-700 032, India
${ }^{\mathrm{b}}$ Centre of Advanced Studies on Natural Products, Department of Chemistry, University College of Science, Kolkata-700 009 , India
Received February 17, 2007

Refluxing of hydroxycoumarinyl ketones with methyl γ-bromocrotonate in dry acetone in presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ afforded substituted angelicins (angular furanocoumarins) in satisfactory yields through intramolecular Aldol condensation followed by β-elimination.
J. Heterocyclic Chem., 45, 673 (2008).

INTRODUCTION

Coumarins are copiously encountered in nature and have been unequivocally characterized from natural sources [1]. Angelicin turns out to be the parent representative of much smaller and less available class of furanocoumarins detected in limited number of plant species of closely related genera [2]. These compounds exhibit a wide range of biological activities recording clinical applications as photoactive drugs in the treatment of skin diseases like psoriasis, vitiligo $[3,4,5]$ and also in photochemotherapy of skin [6]. They are phototoxic to insects, fungi along with a number of viruses and bacteria [7-10].

Synthesis of angelicins has been achieved by various elaborate methods [11-14]. The most common is the allylation of 7-hydroxycoumarin followed by thermal Claisen rearrangement and consequent cyclisation of the allylhydroxycoumarin to produce 8 -methylangelicin [15,16]. In our continuous endeavor to develop different synthetic methodologies for achieving coumarins [17,18] pericyclic reactions involving sigmatropic shift have been carried out in the form of thermal Claisen rearrangement
on different coumarinyl ketones bearing mainly allyloxy moiety. Inspired by highly encouraging observations in the said studies a new synthon was envisaged having electron-withdrawing group attached to the allyl system and the results of the studies are reported herewith.

RESULTS AND DISCUSSION

The base molecule intended for the proposed study of the Claisen rearrangement was judiciously selected as $7-\gamma$ -crotonyloxy-8-coumarinyl ketone. In our maiden attempt to prepare the target molecules hydroxycoumarinyl methyl ketones $\mathbf{1 a}, \mathbf{b}$ were subjected to O-crotonylation by administering methyl γ-bromocrotonate in presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ in refluxing acetone. The respective crotonylated compounds $\mathbf{2 a}, \mathbf{b}$ formed did not, however, follow the expected symmetry allowed $[3,3]$ sigmatropic shift on refluxing in N, N-diethylaniline but led to generation of different angular furanocoumarins (viz. angelicin derivatives) 3a,b in moderate yield as apparently unusual products (Scheme-1). Again, further experimentations led to the observation that refluxing of

Scheme 1

the ketoalkyl and ketoarylcoumarins $\mathbf{1 c} \mathbf{c h}$ and methyl γ bromocrotonate in acetone in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ did not follow the similar itinerary to tamely afford the respective O-alkylated coumarins but did produce the angular furocoumarins 3c-h (Scheme-2) straightaway. Thus the one-pot synthesis of angular furocoumarin derivatives could be simply achieved in satisfactory yield.

It is likely that the hydroxycoumarinyl ketones undergo the usual alkylation to afford initially the respective crotonyloxycoumarinyl ketones. The above simplified syntheses of angelicins may then be logically rationalized through an intramolecular base catalyzed Aldol condensation between the ketofunctionality and allyl methylene unit of the transiently formed crotonyloxycoumarinyl ketones followed by a β-elimination observing E1cB mechanism of the intermediate aldol condensed product. Further O-crotonylation of hydroxycoumarinyl ketones $\mathbf{1 c}$-h was ultimately achieved in very good yield simply by carrying out the crotonylation reaction at room temperature in acetone using
methyl γ-bromocrotonate in presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ by keeping for 12 h (Scheme-2). All these crotonyloxycoumarins $2 \mathbf{c}-\mathrm{h}$ thus prepared did obediently afford the respective angelicins $\mathbf{3 c} \mathbf{- h}$ on refluxing in acetone in presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (Table-1). Hence it may be stated that the course of reaction in boiling acetone turned out to be perfectly in order through intermediacy of $\mathbf{2 c - h}$ as delineated earlier.

It is, however, quite surprising that the O-crotonylated coumarinyl ketones failed to record any sort of sigmatropic rearrangements in various refluxing solvents $v i z$. chlorobenzene, N, N-diethylaniline and diphenyl ether. In all such experimentations the parent crotonyloxy coumarinyl ketones could be recovered quantitatively.

The structure of all the angelicin derivatives synthesized were unequivocally established on the basis of extensive applications of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}, 2 \mathrm{D}$ NMR and mass spectral evidences. In ${ }^{1} \mathrm{H}$ spectra of all the angelicin derivatives the one-proton signal required for 7-hydroxy functionality at $\sim \delta$ 14 and the O-allylic two-proton doublet expected at $\sim \delta 4.8$

Table-1
Synthesis of Angular Furanocoumarins and Crotonyloxycoumarins

Entry	$1,2,3$	ituents represe 1,	ounds	Angular furocoumarin (3)		Crotonyloxy ether (2)	
		R^{1}	R^{2}	Yield \%	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$	Yield \%	$\mathrm{mp}\left({ }^{\circ} \mathrm{C}\right)$
1	a	H	-	40	232	65	165
2	b	Me	-	41	286	70	181
3	c	H	Et	74	175	68	125
4	d	Me	Et	73	228	72	138
5	e	H	${ }^{n} \mathrm{Pr}$	80	192	69	118
6	f	Me	${ }^{n} \mathrm{Pr}$	82	204	79	110
7	g	H	Ph	64	240	64	180
8	h	Me	Ph	62	247	71	185

were conspicuously absent. Moreover the display of proton signals for $3-\mathrm{H}, 4-\mathrm{H} / \mathrm{Me}, 5-\mathrm{H}, 6-\mathrm{H}$ did reveal that sigmatropic shifts to $6-\mathrm{C}$ or $3-\mathrm{C}$ do not take place. It is highly pertinent to mention that the ${ }^{13} \mathrm{C}$ NMR spectral analyses discerned that the signal of C-8 carbonyl group at \sim $\delta 200$ was routinely absent in the product which confirmed the ring closure involving the keto functionality of C-8.

In conclusion it may be stated that the different angelicin derivatives have been achieved in one-pot synthesis following a very simple protocol. Moreover in
this procedure an intramolecular Aldol condensation did take place through vinylogous enolate intermediate without employing any exotic types of bases. Occurrence of the aldol condensation under such a mild basic condition not only highlights the eco-friendly conditions but also emphasizes the very simplicity of this protocol. Synthesis of such angular furanocoumarin derivatives involving unusual intramolecular Aldol condensation instead of simple thermal Claisen rearrangement by incorporation of electron withdrawing group on allyl

Table-2
Elemental Analysis and Spectral Data of Synthesized Compounds

Table-2 (Continued)

Compound	Elemental analysis	UV, IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectral data
2g	$\mathrm{C}, 69.27 ; \mathrm{H}$, $\mathrm{C}, 69.23 ; \mathrm{H}$, 4.43 4.43.	IR: 2952, 1735, 1717, 1686, 1599, 1509, 1495, $1437 \mathrm{~cm}^{-1}$. $\delta_{\mathrm{H}}: 3.68$ (sharp s, $3 \mathrm{H}, 3^{\prime}-\mathrm{CO}_{2} \mathrm{Me}$), 4.72 (broad dd, $2 \mathrm{H}, \mathrm{J}=3.8 \mathrm{~Hz}, 2 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}$), $5.74(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=$ $\left.16.0 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.25(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 3-\mathrm{H}), 6.85\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=16.0 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 6.87$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.43\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 7.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 5-\mathrm{H})$, $7.60\left(\operatorname{broad} \mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right) 7.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 4-\mathrm{H}), 7.84(\operatorname{broad} \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}$, 2 "-H and $\left.6^{\prime \prime}-\mathrm{H}\right)$.
2h	$\begin{array}{ll} \mathrm{C}, 69.81 ; \mathrm{H}, & \mathrm{C}, 69.83 ; \mathrm{H} \\ 4.82 & 4.79 . \end{array}$	IR: 2947, 1723, 1675, 1613, $1568 \mathrm{~cm}^{-1}$. $\delta_{\mathrm{H}}: 2.42\left(\operatorname{sharp} \mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 3.68\left(\operatorname{sharp~s}, 3 \mathrm{H}, 3^{\prime}-\mathrm{CO}_{2} \mathrm{Me}\right), 4.74($ broad dd, $2 \mathrm{H}, \mathrm{J}=3.8 \mathrm{~Hz}, 2.1$ $\left.\mathrm{Hz}, 1^{\prime}-\mathrm{H}\right), 5.76\left(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, 2.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 6.14(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.85(\operatorname{broad} \mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0$ $\left.\mathrm{Hz}, 2^{\prime}-\mathrm{H}\right), 6.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.45\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}\right.$ and $\left.5^{\prime \prime}-\mathrm{H}\right), 7.56$ (broad t, $\left.1 \mathrm{H}, \mathrm{J}=7.0 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 7.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.84\left(\mathrm{broad} \mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right.$ and $6^{\prime \prime}-$ H). $\delta_{\mathrm{C}}: 51.50\left(1^{\circ}, 3^{\prime}-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 67.59\left(2^{\circ}, \mathrm{C}-1^{\prime}\right), 108.98\left(3^{\circ}, \mathrm{C}-6\right), 113.74\left(4^{\circ}, \mathrm{C}-4 \mathrm{a}\right), 114.62\left(3^{\circ}, \mathrm{C}-3\right)$, 118.11 ($4^{\circ}, \mathrm{C}-8$), 122.35 ($\left.4^{\circ}, \mathrm{C}-3^{\prime}\right), 128.70\left(3^{\circ}, 4^{\prime \prime}-\mathrm{C}\right), 129.39$ ($3^{\circ}, \mathrm{C}-5$), 129.72 ($3^{\circ}, 2^{\prime \prime}-\mathrm{C}$ and $\left.6^{\prime \prime}-\mathrm{C}\right)$, $133.84\left(3^{\circ}, 3^{\prime \prime}-\mathrm{C}\right.$ and $\left.5^{\prime \prime}-\mathrm{C}\right), 137.16\left(4^{\circ}, \mathrm{Ph}-\mathrm{C}\right), 140.51$ ($\left.3^{\circ}, \mathrm{C}-2^{\prime}\right), 142.58\left(3^{\circ}, \mathrm{C}-4\right), 158.87\left(4^{\circ}, \mathrm{C}-\right.$ 2), 159.32 ($4^{\circ}, \mathrm{C}-7$), $152.33\left(4^{\circ}, \mathrm{C}-8 \mathrm{a}\right), 165.92\left(4^{\circ}, \mathrm{C}-4^{\prime}\right), 191.36$ ($\left.4^{\circ}, 8-\mathrm{COPh}\right)$.
3a	$\begin{array}{ll} \mathrm{C}, 67.62 ; \mathrm{H}, & \mathrm{C}, 67.60 ; \mathrm{H} \\ 4.27 & 4.25 . \end{array}$	$\begin{aligned} & \text { IR: } 3094,2953,1736,1637,1610,1578,1477,1458,1397 \mathrm{~cm}^{-1} . \\ & \delta_{\mathrm{H}}: 2.62\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CO}_{2} \mathrm{Me}\right), 6.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 3-\mathrm{H}), 6.51(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}= \\ & 15.0 \mathrm{~Hz}, 12-\mathrm{H}), 7.32(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=15.0 \\ & \mathrm{Hz}, 11-\mathrm{H}) 7.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 4-\mathrm{H}) . \\ & \delta_{\mathrm{C}}: 9.93\left(1^{\circ}, 9-\mathrm{CH}_{3}\right), 51.71\left(1^{\circ}, 12-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 108.42\left(3^{\circ}, \mathrm{C}-6\right), 113.01\left(4^{\circ}, \mathrm{C}-4 \mathrm{a}\right), 114.22\left(3^{\circ}, \mathrm{C}-\right. \\ & 3), 118.38\left(3^{\circ}, \mathrm{C}-12\right), 118.48\left(4^{\circ}, \mathrm{C}-8\right), 119.90\left(4^{\circ}, \mathrm{C}-9\right), 125.82\left(3^{\circ}, \mathrm{C}-5\right), 128.43\left(3^{\circ}, \mathrm{C}-11\right), \\ & 144.39\left(3^{\circ}, \mathrm{C}-4\right), 149.38\left(4^{\circ}, \mathrm{C}-8 \mathrm{a}\right), 150.04\left(4^{\circ}, \mathrm{C}-10\right), 157.04\left(4^{\circ}, \mathrm{C}-2\right), 160.00\left(4^{\circ}, \mathrm{C}-7\right), 166.95 \\ & \left(4^{\circ}, \mathrm{C}-13\right) . \\ & m / z 284\left(100, \mathrm{M}^{+}\right), 269\left(2.7, \mathrm{M}^{+}-\mathrm{CH}_{3}\right), 253\left(47.2, \mathrm{M}^{+}-\mathrm{OCH}_{3}\right), 225\left(30, \mathrm{M}^{+}-\mathrm{COOCH}_{3}\right), 197(11.8, \\ & \left.\mathrm{M}^{+}-\mathrm{COOCH}_{3}-\mathrm{CO}\right), 141(10.9), 115(11.8) . \end{aligned}$
3b	$\begin{array}{ll} \mathrm{C}, 68.41 ; \mathrm{H}, & \mathrm{C}, 68.45 ; \mathrm{H}, \\ 4.74 & 4.73 . \end{array}$	$\begin{aligned} & \text { IR: } 3090,2953,1739,1637,1600,1576,1439,1397 \mathrm{~cm}^{-1} . \\ & \delta_{\mathrm{H}}: 2.49\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 2.66\left(\mathrm{~s}, 3 \mathrm{H}, 9-\mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CO}_{2} \mathrm{Me}\right), 6.27(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.64(\mathrm{~d}, \\ & 1 \mathrm{H}, \mathrm{~J}=15.0 \mathrm{~Hz}, 12-\mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J} \\ & =15.0 \mathrm{~Hz}, 11-\mathrm{H}) . \\ & m / z 298\left(100, \mathrm{M}^{+}\right), 267\left(34.5, \mathrm{M}^{+}-\mathrm{OCH}_{3}\right), 239\left(24.5, \mathrm{M}^{+}-\mathrm{COOCH}_{3}\right), 211\left(9.1, \mathrm{M}^{+}-\mathrm{CO}-\dot{\mathrm{COOCH}}{ }_{3}\right) . \end{aligned}$
3 c	$\begin{array}{ll} \mathrm{C}, 68.46 ; \mathrm{H}, & \mathrm{C}, 68.45 ; \mathrm{H}, \\ 4.69 & 4.73 . \end{array}$	IR: 2953, 1720, 1698, 1611, 1570, 1492, 1434, $1408 \mathrm{~cm}^{-1}$. $\delta_{\mathrm{H}}: 1.40\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.08\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}, 12-$ $\left.\mathrm{CO}_{2} \mathrm{Me}\right), 6.41(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, 3-\mathrm{H}), 6.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, 12-\mathrm{H}), 7.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 6-$ H), $7.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}, 5-\mathrm{H}), 7.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, 11-\mathrm{H}), 7.81(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 4-\mathrm{H})$. δ_{C} : $15.59\left(1^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 17.97\left(2^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.71\left(1^{\circ}, 12-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 108.08\left(3^{\circ}, \mathrm{C}-6\right), 112.77$ ($\left.4^{\circ}, \mathrm{C}-4 \mathrm{a}\right), 114.12\left(3^{\circ}, \mathrm{C}-3\right), 118.18$ ($3^{\circ}, \mathrm{C}-12$), 123.04 ($4^{\circ}, \mathrm{C}-8$), 125.97 ($3^{\circ}, \mathrm{C}-5$), 126.48 ($4^{\circ}, \mathrm{C}-9$), 128.47 ($3^{\circ}, \mathrm{C}-11$), 144.25 ($4^{\circ}, \mathrm{C}-10$), 144.35 ($3^{\circ}, \mathrm{C}-4$), $148.70\left(4^{\circ}, \mathrm{C}-8 \mathrm{a}\right), 157.15$ ($4^{\circ}, \mathrm{C}-2$), 160.30 ($4^{\circ}, \mathrm{C}-7$), $167.14\left(4^{\circ}, \mathrm{C}-13\right)$. $m / z 298\left(100, \mathrm{M}^{+}\right), 283\left(10.9, \mathrm{M}^{+}-\mathrm{CH}_{3}\right), 267\left(23.6, \mathrm{M}^{+}-\mathrm{OCH}_{3}\right), 251\left(7.27, \mathrm{M}^{+}-\mathrm{OCH}_{3}-\dot{\mathrm{C}} \mathrm{H}_{3}-\mathrm{H}\right), 238$ $\left(54.5, \mathrm{M}^{+}-\mathrm{OCH}_{3}-\dot{\mathrm{C}}_{2} \mathrm{H}_{5}\right), 223\left(37.2, \mathrm{M}^{+}-\dot{\mathrm{C} O O C H} 3^{-}-\dot{\mathrm{C}} \mathrm{H}_{3}-\mathrm{H}\right), 210\left(20.5, \mathrm{M}^{+}-\dot{\mathrm{C}} \mathrm{COCH}_{3}-\dot{\mathrm{C}}_{2} \mathrm{H}_{5}\right), 195(10$, $\left.\mathrm{M}^{+}-\mathrm{CO}-\dot{\mathrm{C} O O C H} 3_{3}-\dot{\mathrm{C}} \mathrm{H}_{3}-\mathrm{H}\right), 181$ (34.1, $\left.\mathrm{M}^{+}-\mathrm{CO}-\dot{\mathrm{C} O O C H} 3^{-} \dot{\mathrm{C}}_{2} \mathrm{H}_{5}-\mathrm{H}\right), 152$ (23.6, M^{+}-coumarin), 139 (29.1), 128 (25.5), 115 (14.1,), 91 (22.3, + $\dot{\mathrm{C}} \mathrm{H}_{2} \mathrm{Ph}$), 69 (20.9), 55 (20).
3d	$\begin{array}{ll} \mathrm{C}, 69.21 ; \mathrm{H}, & \mathrm{C}, 69.23 ; \mathrm{H}, \\ 5.19 & 5.16 . \end{array}$	$\begin{aligned} & \text { IR: } 3047,2976,1734,1654,1607,1570,1458,1438,1391 \mathrm{~cm}^{-1} . \\ & \text { UV: } 383.5(4.36), 315(4.24), 269(4.23) . \\ & \delta_{\mathrm{H}}: 1.38\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.2 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.49\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 3.07\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{~J}=7.0 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), \\ & 3.83\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CO}_{2} \mathrm{Me}\right), 6.27(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=15.0 \mathrm{~Hz}, 12-\mathrm{H}), 7.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \\ & \mathrm{Hz}, 6-\mathrm{H}), 7.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=15.0 \mathrm{~Hz}, 11-\mathrm{H}) . \\ & \delta_{\mathrm{C}}: 15.59\left(1^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH} \mathrm{H}_{3}\right), 17.95\left(2^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH} 3\right), 19.42\left(1^{\circ}, 4-\mathrm{CH}_{3}\right), 51.82\left(1^{\circ}, 12-\mathrm{CO}_{2} C \mathrm{CH}_{3}\right), \\ & 108.07\left(3^{\circ}, \mathrm{C}-6\right), 112.79\left(3^{\circ}, \mathrm{C}-3\right), 114.72\left(4^{\circ}, \mathrm{C}-4 \mathrm{a}\right), 117.55\left(4^{\circ}, \mathrm{C}-8\right), 117.99\left(3^{\circ}, \mathrm{C}-12\right), 122.61 \\ & \left(3^{\circ}, \mathrm{C}-5\right), 126.68\left(4^{\circ}, \mathrm{C}-9\right), 128.41\left(3^{\circ}, \mathrm{C}-11\right), 148.55\left(4^{\circ}, \mathrm{C}-8 \mathrm{a}\right), 148.91\left(4^{\circ}, \mathrm{C}-4\right), 153.27\left(4^{\circ}, \mathrm{C}-\right. \\ & 10), 156.97\left(4^{\circ}, \mathrm{C}-2\right), 160.19\left(4^{\circ}, \mathrm{C}-7\right), 167.08\left(4^{\circ}, \mathrm{C}-13\right) . \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {at } \mathrm{m} / \mathrm{z} 313.1,[\mathrm{M}+\mathrm{Na}]^{+} \text {at } m / z 335.1} \end{aligned}$
3 e	$\begin{array}{ll} \mathrm{C}, 69.26 ; \mathrm{H}, & \mathrm{C}, 69.23 ; \mathrm{H}, \\ 5.14 & 5.16 . \end{array}$	IR: $3070,2962,1735,1654,1617,1577,1483,1434,1403 \mathrm{~cm}^{-1}$. UV: 324 (4.20), 221 (4.27). $\delta_{\mathrm{H}}: 1.00\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80\left(\right.$ sextet, $\left.2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.99(\mathrm{t}$, $\left.2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CO}_{2} \mathrm{Me}\right), 6.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 3-\mathrm{H}), 6.54(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, 12-\mathrm{H}), 7.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}$ $=15.0 \mathrm{~Hz}, 11-\mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 4-\mathrm{H})$. $\delta_{\mathrm{C}}: 13.56\left(1^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 23.86\left(2^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.25\left(2^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.73\left(1^{\circ}\right.$, $\left.13-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 108.45\left(3^{\circ}, \mathrm{C}-6\right), 113.83\left(4^{\circ}, \mathrm{C}-4 \mathrm{a}\right), 114.22\left(3^{\circ}, \mathrm{C}-3\right), 118.04\left(3^{\circ}, \mathrm{C}-12\right), 118.45\left(4^{\circ}\right.$, C-8), 124.72 ($4^{\circ}, \mathrm{C}-9$), 125.84 ($3^{\circ}, \mathrm{C}-5$), 128.57 ($3^{\circ}, \mathrm{C}-11$), 144.07 ($3^{\circ}, \mathrm{C}-4$), 149.49 ($\left.4^{\circ}, \mathrm{C}-8 \mathrm{a}\right)$, $149.74\left(4^{\circ}, \mathrm{C}-10\right), 157.21\left(4^{\circ}, \mathrm{C}-2\right), 159.87\left(4^{\circ}, \mathrm{C}-7\right), 166.99\left(4^{\circ}, \mathrm{C}-13\right)$. $[\mathrm{M}-\mathrm{H}]^{+}$at $m / z 311.1\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$at $m / z 329.3$

Table-2 (Continued)

Compound	Elemental analysis	UV, IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and Mass spectral data
3 f	C, 69.89; H, C, $69.93 ; ~ H$, 5.58 5.56.	$\begin{aligned} & \text { IR: } 3090,2964,1736,1666,1605,1570,1391 \mathrm{~cm}^{-1} . \\ & \text { UV: } 323(4.33), 224.5(4.25) . \\ & \delta_{\mathrm{H}}: 1.01\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.80\left(\text { sextet, } 2 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.49(\mathrm{~s}, \\ & \left.3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 3.02\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{~J}=7.5 \mathrm{~Hz}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CO}_{2} \mathrm{Me}\right), 6.27(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), \\ & 6.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=15.0 \mathrm{~Hz}, 12-\mathrm{H}), 7.37(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.56(\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.62 \\ & (\mathrm{~d}, 1 \mathrm{H}, \mathrm{~J}=15.0 \mathrm{~Hz}, 11-\mathrm{H}) . \\ & \delta_{\mathrm{C}}: 13.37\left(\mathrm{I}^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 19.51\left(1^{\circ}, 4-\mathrm{CH}_{3}\right) 23.95\left(2^{\circ}, 9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 26.32\left(2^{\circ},\right. \\ & \left.9-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 51.74\left(1^{\circ}, 12-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 108.07\left(3^{\circ}, \mathrm{C}-6\right), 113.03\left(3^{\circ}, \mathrm{C}-3\right), 114.92\left(4^{\circ}, \mathrm{C}-4 \mathrm{a}\right), \\ & 118.20\left(3^{\circ}, \mathrm{C}-12\right), 118.37\left(4^{\circ}, \mathrm{C}-8\right), 122.56\left(4^{\circ}, \mathrm{C}-5\right), 125.11\left(4^{\circ}, \mathrm{C}-9\right), 128.71\left(3^{\circ}, \mathrm{C}-11\right), 148.71 \\ & \left(4^{\circ}, \mathrm{C}-4\right), 149.48\left(4^{\circ}, \mathrm{C}-8 \mathrm{a}\right), 154.01\left(4^{\circ}, \mathrm{C}-10\right), 157.19\left(4^{\circ}, \mathrm{C}-7\right), 157.80\left(4^{\circ}, \mathrm{C}-2\right), 167.08\left(4^{\circ},\right. \\ & \mathrm{C}-13) . \\ & {[\mathrm{M}+\mathrm{H}]^{+} \text {at } m / z 327.2,[\mathrm{M}+\mathrm{Na}]^{+} \text {at } m / z 349.2} \end{aligned}$
3 g	$\begin{array}{ll} \mathrm{C}, 72.81 ; \mathrm{H}, & \mathrm{C}, 72.83 ; \mathrm{H}, \\ 4.11 & 4.07 . \end{array}$	IR: 2952, 1734, 1604, $1419 \mathrm{~cm}^{-1}$. $\delta_{\mathrm{H}}: 3.79\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CO}_{2} \mathrm{Me}\right), 6.35(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, 3-\mathrm{H}), 6.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, 12-\mathrm{H}), 7.44$ (d, $1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, 6-\mathrm{H}), 7.46\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=5.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.0 \mathrm{~Hz}, 11-\mathrm{H})$, $7.50\left(\right.$ broad $\left.\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.52\left(\operatorname{broad} \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=5.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right), 7.59(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $9.0 \mathrm{~Hz}, 5-\mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.5 \mathrm{~Hz}, 4-\mathrm{H})$ $\delta_{\mathrm{C}}: 51.71\left(1^{\circ}, 12-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 108.54\left(3^{\circ}, \mathrm{C}-6\right), 114.26\left(4^{\circ}, \mathrm{C}-4 \mathrm{a}\right), 114.75\left(3^{\circ}, \mathrm{C}-3\right), 118.3\left(3^{\circ}\right.$, C-12), 120.20 (3°, C-5), 125.15 (4°, C-8), 126.23 ($4^{\circ}, \mathrm{C}-4$), 126.23 ($\left.3^{\circ}, 4^{\prime}-\mathrm{C}\right), 128.47$ ($3^{\circ}, \mathrm{C}-11$), 128.92 ($3^{\circ}, 2^{\prime}-\mathrm{C}$ and $6^{\prime}-\mathrm{C}$), 129.67 ($4^{\circ}, \mathrm{C}-9$), 129.78 ($3^{\circ}, 3^{\prime}-\mathrm{C}$ and $5^{\prime}-\mathrm{C}$), 143.84 ($\left.4^{\circ}, \mathrm{Ph}-\mathrm{C}\right), 149.77$ ($\left.4^{\circ}, \mathrm{C}-8 \mathrm{a}\right), 153.32\left(4^{\circ}, \mathrm{C}-10\right), 157.09$ ($4^{\circ}, \mathrm{C}-7$), 159.44 ($\left.4^{\circ}, \mathrm{C}-2\right), 166.77$ ($4^{\circ}, \mathrm{C}-13$). $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 347.2,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 369.3$
3h	$\begin{array}{ll}\text { C, 73.31; H, 4.49 } & \text { C, 73.33; } \\ & \text { H, 4.48. }\end{array}$	IR: 2927, 1736, 1617, 1423, $1391 \mathrm{~cm}^{-1}$. UV: 394 (4.46), 382 (4.46), 341 (4.46), 324 (4.46), 237 (4.39). $\delta_{\mathrm{H}}: 2.65\left(\mathrm{~s}, 3 \mathrm{H}, 4-\mathrm{CH}_{3}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, 12-\mathrm{CO}_{2} \mathrm{Me}\right), 6.25(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 6.68(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.7 \mathrm{~Hz}$, $12-\mathrm{H}), 7.47(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, 6-\mathrm{H}), 7.51\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right.$ and $\left.5^{\prime}-\mathrm{H}\right), 7.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ $15.8 \mathrm{~Hz}, 11-\mathrm{H}), 7.60\left(\right.$ broad $\left.\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 7.61\left(\operatorname{broad} \mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=6.2 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right.$ and $\left.6^{\prime}-\mathrm{H}\right)$, $7.64(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}, 5-\mathrm{H})$. $\delta_{\mathrm{C}}: 19.49\left(1^{\circ}, 4-\mathrm{CH}_{3}\right), 51.85\left(1^{\circ}, 12-\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 108.15\left(3^{\circ}, \mathrm{C}-6\right), 113.30\left(3^{\circ}, \mathrm{C}-3\right), 115.13\left(4^{\circ}\right.$, C-4a), 116.76 ($\left.4^{\circ}, \mathrm{C}-8\right), 119.74$ ($3^{\circ}, \mathrm{C}-12$), 122.94 ($3^{\circ}, \mathrm{C}-5$), 128.33 ($3^{\circ}, \mathrm{C}-11$), 129.69 ($4^{\circ}, \mathrm{C}-9$), 129.75 ($\left.3^{\circ}, 4^{\prime}-\mathrm{C}\right), 130.39\left(3^{\circ}, 2^{\prime}-\mathrm{C}\right.$ and $\left.6^{\prime}-\mathrm{C}\right), 130.52\left(3^{\circ}, 3^{\prime}-\mathrm{C}\right.$ and $\left.5^{\prime}-\mathrm{C}\right), 143.33\left(4^{\circ}, \mathrm{Ph}-\mathrm{C}\right) 148.90$ ($4^{\circ}, \mathrm{C}-4$), 149.47 ($\left.4^{\circ}, \mathrm{C}-8 \mathrm{a}\right), 152.87\left(4^{\circ}, \mathrm{C}-10\right), 156.78\left(4^{\circ}, \mathrm{C}-7\right), 159.71\left(4^{\circ}, \mathrm{C}-2\right), 166.88\left(4^{\circ}\right.$, C-13). $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 361.2,[\mathrm{M}+\mathrm{Na}]^{+}$at $m / z 383.2$

moiety encourages further study of such rearrangement and synthesis of more furano and pyranocoumarins by varying substituents at the 8 - position and also on electron deficient allyloxy moiety of the coumarin derivatives.

EXPERIMENTAL

All melting points were determined in open capillaries and are uncorrected. IR spectra were recorded in KBr with Perkin-Elmer $883-\mathrm{IR}$, and RXI FT IR spectrophotometers. The UV spectra were measured in 95% ethanol using Hitachi U 2000 and Lamda 20 ELMER spectrophotometer. The elemental analyses were carried out in Perkin Elmer 240C elemental analyzer. The ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in Bruker AV300 supercon NMR spectrometer operating at 300.13 MHz for proton and 75.47 MHz for carbon using CDCl_{3} as a solvent and TMS as an internal standard. Mass spectra were recorded on Finnigan Mat 1020 C, Shimadzu Model GEMS QP1000A, LCMS MS Q-TOF-micro spectrometers and Q TRAP LC/MS/MS system operative at 70 eV . The column chromatographic separation and filtration were performed with silica gel (mesh size $60-120$) prepared by Glaxo (India) Ltd and Merck (India) Ltd. Petroleum ether used had a boiling point $60-80^{\circ} \mathrm{C}$.

Synthesis of crotonyloxy ether 2a,b. 7-Hydroxy-8-acetylcoumarin 1a and 4-methyl-7-hydroxy-8-acetylcoumarins 1b $(2.5 \mathrm{mmol})$ dissolved in dry acetone $(50 \mathrm{~mL})$ was treated with
methyl γ-bromocrotonate $(0.3 \mathrm{~mL}, 2.5 \mathrm{mmol})$ and refluxed in the presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 3.6 \mathrm{mmol})$ for 8 h . Acetone was distilled off and the residual content was treated with water and acidified with cold $4 N \mathrm{HCl}(15 \mathrm{~mL})$. The organic part of the mixture was extracted out with chloroform ($2 \times 50 \mathrm{~mL}$) followed by successive washing of combined chloroform layer with saturated brine solution (15 mL), saturated sodium bicarbonate solution ($2 \times 15 \mathrm{~mL}$) and finally with saturated brine solution ($3 \times 15 \mathrm{~mL}$). The chloroform layer was dried over anhydrous sodium sulphate for 30 minutes. Filtration and solvent removal afforded crude solid mass, which crystallized from ethyl acetate as white needles, yield (65-75\%).

Synthesis of crotonyloxy ether $\mathbf{2 c}$-h. To a solution of 7-hydroxy-8-ketocoumarins and 4-methyl-7-hydroxy-8-ketocoumarins $\mathbf{1 c - h}(2.5 \mathrm{mmol})$ in dry acetone (15 mL) were added methyl γ-bromocrotonate ($0.3 \mathrm{~mL}, 2.5 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 3.6 \mathrm{mmol})$. The mixture was kept at room temperature for 12 h . Acetone was then removed by evaporation and the content was treated with water to dissolve $\mathrm{K}_{2} \mathrm{CO}_{3}$. The organic part of the mixture was extracted with chloroform ($2 \times 50 \mathrm{~mL}$) and acidified with cold $4 N \mathrm{HCl}$ (15 mL). The chloroform layer was subsequently washed respectively with saturated brine solution (20 mL), saturated sodium bicarbonate solution $(20 \mathrm{~mL})$ and brine solution (3×20 mL). Drying of the organic layer over anhydrous sodium sulphate for 30 minutes, and solvent removal afforded a solid
mass crystallizable from ethyl acetate as white flaky crystals yield (64-72\%).
Synthesis of angular furanocoumarins 3a,b. Crotonyloxy ethers of 7-hydroxy-8-acetylcoumarin 3a and 4-methyl-7-hydroxy-8-acetylcoumarin 3b (2.5 mmol) dissolved in PhNEt_{2} $(20 \mathrm{~mL})$ was refluxed for 8 h . Excess PhNEt_{2} was distilled off and the residual content was treated with water and acidified with cold $2 N \mathrm{HCl}(15 \mathrm{~mL})$. The organic part of the mixture was extracted out with chloroform ($2 \times 50 \mathrm{~mL}$) followed by successive washing of combined chloroform layer with saturated brine solution (15 mL), saturated sodium bicarbonate solution $(2 \times 15 \mathrm{~mL})$ and finally with saturated brine solution $(3 \times 15 \mathrm{~mL})$. The chloroform layer was dried over anhydrous sodium sulphate for 30 minutes. Filtration and solvent removal afforded crude oil, which was column chromatographed on silica gel. The angular furanocoumarins 2a,b were obtained on elution with petroleum ether and ethyl acetate (4:1) and crystallized from ethyl acetate as white needles, yield ($40-41 \%$).

Synthesis of angular furanocoumarins 3c-h. 7-Hydroxy-8ketocoumarins and 4-methyl-7-hydroxy-8-ketocoumarins 1c-h $(2.5 \mathrm{mmol})$ dissolved in dry acetone (50 mL) was treated with methyl γ-bromocrotonate ($0.3 \mathrm{~mL}, 2.5 \mathrm{mmol}$) and refluxed in the presence of anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(0.5 \mathrm{~g}, 3.6 \mathrm{mmol})$ for 8 h . Acetone was distilled off and the residual content was treated with water and acidified with cold $4 N \mathrm{HCl}(15 \mathrm{~mL})$. The organic part of the mixture was extracted out with chloroform ($2 \times 50 \mathrm{~mL}$) followed by successive washing of combined chloroform layer with saturated brine solution (15 mL), saturated sodium bicarbonate solution ($2 \times 15 \mathrm{~mL}$) and finally with saturated brine solution $(3 \times 15 \mathrm{~mL})$. The chloroform layer was dried over anhydrous sodium sulphate for 30 minutes. Filtration and solvent removal afforded crude solid mass, which crystallized from ethyl acetate as white needles, yield ($62-82 \%$).

Acknowledgment. Sincere thanks are accorded to the Department of Chemistry, J.U. for IR spectra, CAS Instrumentation Centre, Department of Chemistry, C.U. for various NMR spectra, IICB, Kolkata 700032 for mass spectral data and IACS, Kolkata 700032 for elemental analyses.

REFERENCES

[1a] Murray, R. D. H. Fortschritte der Chem. Org. Naturstoffe; Herz, W.; Kirby, G. W.; Steiglich, W. C., Eds.; Springer-Verlag: Wien, 1978; Vol. 35, p.199; b) Murray, R. D. H.; Mendez. J; Brown. S. A. The Natural Coumarins, Occurrence, Chemistry and Biochemistry; John Wiley \& Sons Inc.: NY, 1982. c) Murray, R. D. H. Fortschritte der Chem. Org. Naturstoffe; Herz, W.; Kirby, G. W.; Steiglich, W. C., Eds.; Springer-Verlag: Wien, 1991; Vol. 58, p. 83.
[2] Lee, Y. R. Tetrahedron 1995, 51, 3087.
[3] Parrish, J.A.; Fitzpatrick, T. B.; Tanenbaum, L. N. Engl. J. Med. 1974, 291, 1207.
[4] Scott, B. R.; Pathak, M. A.; Mohn, G. R. Mutat. Res. 1976, 39, 29.
[5] Regan, J. D.; Parrish, J. A. The Science of Photomedicine; Plenum Press: NewYork, 1982.
[6] Bordin, F.; Dall'Acqua, F.; Guitto, A. Pharmacol. Ther. 1991, 52, 331 and references cited therein.
[7] Berumbaum, M. Ecology 1981, 62, 1254.
[8] Stanely, W. C.; Jurd, L. J. Agr. Food Chem. 1971, 19, 1106.
[9] Hudson, J. B.; Fong, R.; Altramarino, M.; Towes, G. H. Planta Medica 1987, 536.
[10] Ashwood-Smith, M. J.; Poulton, G. A.; Barker, M.; Mildenberger, M. Nature 1980, 285, 407.
[11] Aneja, R.; Mukerjee, S. K.; Seshadri, T. R. Tetrahedron 1958, 4, 256.
[12] Wolff, W. D.; McCallum, J. S.; Kunng, F. A. J. Am. Chem. Soc. 1988, 110, 7419.
[13a] Zubia, E.; Luis, F. R.; Massanet, G. M.; Collado, I. G. Tetrahedron 1992, 48, 4239; b) Dufflay, R. P.; Stevenson, R. Synth.Commun. 1978, 8, 175.
[14] Mali, R. S.; Pandhare, N. A.; Sindkhedkar, M. D. Tetrahedron Lett. 1995, 36, 7109.
[15] Chatterjee, R. M.; Sen, K. J. Indian Chem. Soc. 1967, 44, 140.
[16] Avula, P.; Krupadanam, G. L. D.; Srimannarayana, G. Bull. Chem. Soc. Jpn. 1992, 65, 1191 and references cited there in.
[17a] Dutta, L. N.; Sinha, N. C.; Sarkar, A. K. Indian J. Chem. 1991, 30B, 1112; b) Dutta, L. N.; Sinha, N. C.; Sarkar, A. K. Indian J. Chem. 1988, 27B, 801.
[18a] Dutta, L. N.; Bhattacharyya, M.; Sarkar, A. K. Can. J. Chem. 1995, 73, 1556; b) Dutta, L. N.; Bhattacharyya, M. J. Indian Chem. Soc. 2003, 80, 953.

