One-pot Synthesis of Angular Furocoumarins: a Simple Protocol Involving Unprecedented Intramolecular Aldol Condensation

Lakshmi Narayan Dutta,^{a*} Banani De^a and Amarendra Patra^b

^aDepartment of Chemistry, Jadavpur University, Kolkata-700 032, India

^bCentre of Advanced Studies on Natural Products, Department of Chemistry, University College of Science,

Kolkata-700 009 , India

Received February 17, 2007

Refluxing of hydroxycoumarinyl ketones with methyl γ -bromocrotonate in dry acetone in presence of anhydrous K₂CO₃ afforded substituted angelicins (angular furanocoumarins) in satisfactory yields through intramolecular Aldol condensation followed by β -elimination.

J. Heterocyclic Chem., 45, 673 (2008).

INTRODUCTION

Coumarins are copiously encountered in nature and have been unequivocally characterized from natural sources [1]. Angelicin turns out to be the parent representative of much smaller and less available class of furanocoumarins detected in limited number of plant species of closely related genera [2]. These compounds exhibit a wide range of biological activities recording clinical applications as photoactive drugs in the treatment of skin diseases like psoriasis, vitiligo [3,4,5] and also in photochemotherapy of skin [6]. They are phototoxic to insects, fungi along with a number of viruses and bacteria [7-10].

Synthesis of angelicins has been achieved by various elaborate methods [11-14]. The most common is the allylation of 7-hydroxycoumarin followed by thermal Claisen rearrangement and consequent cyclisation of the allylhydroxycoumarin to produce 8-methylangelicin [15,16]. In our continuous endeavor to develop different synthetic methodologies for achieving coumarins [17,18] pericyclic reactions involving signatropic shift have been carried out in the form of thermal Claisen rearrangement on different coumarinyl ketones bearing mainly allyloxy moiety. Inspired by highly encouraging observations in the said studies a new synthon was envisaged having electron-withdrawing group attached to the allyl system and the results of the studies are reported herewith.

RESULTS AND DISCUSSION

The base molecule intended for the proposed study of the Claisen rearrangement was judiciously selected as 7- γ crotonyloxy-8-coumarinyl ketone. In our maiden attempt to prepare the target molecules hydroxycoumarinyl methyl ketones **1a,b** were subjected to *O*-crotonylation by administering methyl γ -bromocrotonate in presence of anhydrous K₂CO₃ in refluxing acetone. The respective crotonylated compounds **2a,b** formed did not, however, follow the expected symmetry allowed [3,3]sigmatropic shift on refluxing in *N*,*N*-diethylaniline but led to generation of different angular furanocoumarins (*viz.* angelicin derivatives) **3a,b** in moderate yield as apparently unusual products (Scheme-1). Again, further experimentations led to the observation that refluxing of

Scheme 1

the ketoalkyl and ketoarylcoumarins **1c-h** and methyl γ bromocrotonate in acetone in presence of K₂CO₃ did not follow the similar itinerary to tamely afford the respective *O*-alkylated coumarins but did produce the angular furocoumarins **3c-h** (Scheme-2) straightaway. Thus the one-pot synthesis of angular furocoumarin derivatives could be simply achieved in satisfactory yield.

It is likely that the hydroxycoumarinyl ketones undergo the usual alkylation to afford initially the respective crotonyloxycoumarinyl ketones. The above simplified syntheses of angelicins may then be logically rationalized through an intramolecular base catalyzed Aldol condensation between the ketofunctionality and allyl methylene unit of the transiently formed crotonyloxycoumarinyl ketones followed by a β -elimination observing E1cB mechanism of the intermediate aldol condensed product. Further *O*-crotonylation of hydroxycoumarinyl ketones **1c-h** was ultimately achieved in very good yield simply by carrying out the crotonylation reaction at room temperature in acetone using methyl γ -bromocrotonate in presence of K₂CO₃ by keeping for 12 h (Scheme-2). All these crotonyloxycoumarins **2c-h** thus prepared did obediently afford the respective angelicins **3c-h** on refluxing in acetone in presence of anhydrous K₂CO₃ (Table-1). Hence it may be stated that the course of reaction in boiling acetone turned out to be perfectly in order through intermediacy of **2c-h** as delineated earlier.

It is, however, quite surprising that the *O*-crotonylated coumarinyl ketones failed to record any sort of sigmatropic rearrangements in various refluxing solvents *viz.* chlorobenzene, *N*,*N*-diethylaniline and diphenyl ether. In all such experimentations the parent crotonyloxy coumarinyl ketones could be recovered quantitatively.

The structure of all the angelicin derivatives synthesized were unequivocally established on the basis of extensive applications of ¹H, ¹³C, 2D NMR and mass spectral evidences. In ¹H spectra of all the angelicin derivatives the one-proton signal required for 7-hydroxy functionality at ~ δ 14 and the *O*-allylic two-proton doublet expected at ~ δ 4.8

 Table-1

 Synthesis of Angular Furanocoumarins and Crotonyloxycoumarins

Entry	Substituents for compounds representing 1, 2, 3			Angular furocoumarin (3)		Crotonyloxy ether (2)	
-		\mathbb{R}^1	\mathbb{R}^2	Yield %	mp (°C)	Yield %	mp (°C)
1	а	Н	_	40	232	65	165
2	b	Me	_	41	286	70	181
3	с	Н	Et	74	175	68	125
4	d	Me	Et	73	228	72	138
5	е	Н	ⁿ Pr	80	192	69	118
6	f	Me	ⁿ Pr	82	204	79	110
7	g	Н	Ph	64	240	64	180
8	h	Me	Ph	62	247	71	185

were conspicuously absent. Moreover the display of proton signals for 3-H, 4-H/Me, 5-H, 6-H did reveal that sigmatropic shifts to 6-C or 3-C do not take place. It is highly pertinent to mention that the ¹³C NMR spectral analyses discerned that the signal of C-8 carbonyl group at ~ δ 200 was routinely absent in the product which confirmed the ring closure involving the keto functionality of C-8.

In conclusion it may be stated that the different angelicin derivatives have been achieved in one-pot synthesis following a very simple protocol. Moreover in this procedure an intramolecular Aldol condensation did take place through vinylogous enolate intermediate without employing any exotic types of bases. Occurrence of the aldol condensation under such a mild basic condition not only highlights the eco-friendly conditions but also emphasizes the very simplicity of this protocol. Synthesis of such angular furanocoumarin derivatives involving unusual intramolecular Aldol condensation instead of simple thermal Claisen rearrangement by incorporation of electron withdrawing group on allyl

Compound	Elemental analysis		UV IR ¹ H ¹³ C NMR and Mass spectral data		
compound	Found	Calculated			
2a	C, 63.46; H, 4.67	C, 63.47; H, 4.68.	IR: 3097, 2951, 1744, 1721, 1698, 1621, 1578 cm ⁻¹ . δ_{H} : 2.65 (s, 3H, 8-COMe), 3.77 (sharp s, 3H, 3'-CO ₂ Me), 4.83 (broad dd, 2H, J = 3.8 Hz, 2Hz, 1'-H), 6.14 (broad d, 1H, J = 15.8 Hz, 3'-H), 6.30 (d, 1H, J = 9.5 Hz, 3-H), 6.83 (d, 1H, J = 8.7 Hz, 6-H), 7.06 (dt, 1H, J = 15.8 Hz, 3.8 Hz, 2'-H), 7.46 (d, 1H, J = 8.6 Hz, 5-H), 7.65 (d, 1H, J = 9.5 Hz, 4 H)		
2b	C, 64.57; H, 5.06	C, 64.55; H, 5.09.	IR: 2972, 1728, 1710, 1609, 1569, 1495, 1431, 1388, 1366 cm ⁻¹ . δ_{H} : 2.38 (sharp s, 3H, 4-CH ₃), 2.60 (s, 3H, 8-COMe), 3.73 (sharp s, 3H, 3'-CO ₂ Me), 4.70 (broad dd, 2H, J = 3.8 Hz, 2.1 Hz, 1'-H), 6.10 (dt, 1H, J = 15.0 Hz, 1.8 Hz, 3'-H), 6.13 (broad s, 1H, 3-H), 6.82 (d, 1H, J = 9.0 Hz, 6-H), 7.01 (dt, 1H, J = 15.0 Hz, 2.1 Hz, 2'-H), 7.55 (d, 1H, J = 9.0 Hz, 5-H). δ_{C} : 18.66 (1°, 4-CH ₃), 32.41 (1°, 8-COCH ₃), 51.61 (1°, 3'-CO ₂ CH ₃), 67.48 (2°, C-1'), 108.68 (3°, C-6), 113.01 (3°, C-3), 114.69 (4°, C-4a), 120.27 (4°, C-8), 122.59 (3°, C-3'), 126.3 (3°, C-5), 140.75 (3°, C-2'), 150.92 (4°, C-4), 151.68 (4°, C-8a), 156.78 (4°, C-2), 159.41 (4°, C-7), 165.94 (4°, C-4') 198.27 (4° 8-COCH ₃)		
2c	C, 64.54; H, 5.11	C, 64.55; H, 5.09.	IR: 3121, 2950, 1722, 1687, 1609, 1575, 1491, 1441, 1405 cm ⁻¹ . δ_{H} : 1.18 (t, 3H, J = 7.2 Hz, 8-COCH ₂ CH ₃), 2.84 (q, 2H, J = 7.2 Hz, 8-COCH ₂ CH ₃), 3.69 (sharp s, 3H, 3'-CO ₂ Me), 4.74 (broad dd, 2H, J = 3.8 Hz, 2.0 Hz, 1'-H), 6.04 (dt, 1H, J = 15.0 Hz, 1.8 Hz, 3'-H), 6.22 (d, 1H, J = 9.6 Hz, 3-H), 6.75 (d, 1H, J = 8.7 Hz, 6-H), 6.96 (dt, 1H, J = 15.7 Hz, 3.8 Hz, 2'-H), 7.37 (d, 1H, J = 8.7 Hz, 5-H), 7.57 (d, 1H, J = 9.6 Hz, 4-H)		
2d	C, 65.43; H, 5.52	C, 65.45; H, 5.49.	IR: 2952, 1730, 1714, 1666, 1608, 1560 cm ⁻¹ . $\delta_{H^{i}}$ 1.24 (t, 3H, J = 7.2 Hz, 8-COCH ₂ CH ₃), 2.41 (sharp s, 3H, 4-CH ₃), 2.89 (q, 2H, J = 7.5 Hz, 8-COCH ₂ CH ₃), 3.75 (sharp s, 3H, 3'-CO ₂ Me), 4.80 (broad dd, 2H, J = 3.8 Hz, 2.1 Hz, 1'-H), 6.10 (dt, 1H, J = 16.0 Hz, 2.1 Hz, 3'-H), 6.16 (broad s, 1H, 3-H), 6.82 (d, 1H, J = 9.0 Hz, 6-H), 7.02 (dt, 1H, J = 15.0 Hz, 2.1 Hz, 2'-H), 7.55 (d, 1H, J = 9.0 Hz, 5-H). δ_{c} : 7.54 (1°, 8-COCH ₂ CH ₃), 18.49 (1°, 4-CH ₃), 38.20 (2°, 8-COCH ₂ CH ₃), 51.65 (1°, 3'-CO ₂ CH ₃), 67.63 (2°, C-1'), 108.68 (3°, C-6), 113.09 (3°, C-3), 114.73 (4°, C-4a), 120.29 (4°, C-8), 122.53 (3°, C-3'), 126.14 (3°, C-5), 140.83 (3°, C-2'), 150.94 (4°, C-4), 151.70 (4°, C-8a), 156.84 (4°, C-2) 159 50 (4°, C-7) 165 99 (4°, C-4') 201.73 (4°, 8-COCH ₂ CH ₄).		
2e	C, 65.47; H, 5.47	C, 65.45; H, 5.49.	IR: 3088, 2971, 1723, 1700, 1606, 1570, 1495, 1428, 1386 cm ⁻¹ . $\delta_{H^{\circ}}$ 0.98 (t, 3H, J = 7.5 Hz, 8-COCH ₂ CH ₂ CH ₃), 1.75 (sextet, 2H, J = 7.5 Hz, 8-COCH ₂ CH ₂ CH ₃), 2.84 (t, 2H, J = 7.5 Hz, 8-COCH ₂ CH ₂ CH ₃), 3.75 (sharp s, 3H, 3'-CO ₂ Me), 4.78 (broad dd, 2H, J = 3.8 Hz, 2.1 Hz, 1'-H), 6.09 (dt, 1H, J = 16.0 Hz, 2.1 Hz, 3'-H), 6.24 (d, 1H, J = 9.0 Hz, 3-H), 6.80 (d, 1H, J = 9.0 Hz, 6-H), 7.00 (dt, 1H, J = 15.0 Hz, 2.1 Hz, 2'-H), 7.43 (d, 1H, J = 9.0 Hz, 5-H), 7.62 (d, 1H, J = 9.0 Hz, 4-H). $\delta_{C^{\circ}}$ 13.58 (1°, 8-COCH ₂ CH ₂ CH ₃), 14.70 (3°, C-2'), 16.92 (2°, 8-COCH ₂ CH ₂ CH ₃), 46.87 (2°, 8-COCH ₂ CH ₂ CH ₃), 51.74 (1°, 3'-CO ₂ CH ₃), 67.67 (2°, C-1'), 108.98 (3°, C-6), 113.54 (4°, C-4a), 114.34 (3°, C-3), 120.26 (4°, C-8), 122.55 (3°, C-3'), 129.41 (3°, C-5), 142.76 (3°, C-4), 151.39 (4°, C-8a), 156.99 (4°, C-2), 159.37 (4°, C-7), 165.92 (4°, C-4'), 201.01 (4°, 8-COCH ₂ CH ₂ CH ₃).		
2f	C, 66.30; H, 5.84	C, 66.27; H, 5.85.	IR: 3091, 2931, 1736, 1712, 1666, 1605, 1574, 1424, 1302 cm ⁻¹ . $\delta_{H^{\circ}}$ 0.99 (t, 3H, J = 7.5 Hz, 8-COCH ₂ CH ₂ CH ₃), 1.76 (sextet, 2H, J = 7.5 Hz, 8-COCH ₂ CH ₂ CH ₃), 2.38 (sharp s, 3H, 4-CH ₃), 2.84 (t, 2H, J = 7.5 Hz, 8-COCH ₂ CH ₂ CH ₃), 3.74 (sharp s, 3H, 3'-CO ₂ Me), 4.78 (broad dd, 2H, J = 3.8 Hz, 1.8 Hz, 1'-H), 6.09 (broad d, 1H, J = 15.0 Hz, 3'-H), 6.14 (s, 1H, 3-H), 6.81 (d, 1H, J = 9.0 Hz, 6-H), 7.01 (broad d, 1H, J = 15.0 Hz, 2'-H), 7.54 (d, 1H, J = 9.0 Hz, 5-H). $\delta_{C^{\circ}}$ 13.63 (1°, 8-COCH ₂ CH ₂ CH ₃), 16.96 (2°, 8-COCH ₂ CH ₂ CH ₃), 18.52 (1°, 4-CH ₃), 46.93 (2°, 8-COCH ₂ CH ₂ CH ₃), 51.64 (1°, 3'-CO ₂ CH ₃), 67.63 (2°, C-1'), 108.66 (3°, C-6), 113.13 (3°, C-3), 114.70 (4°, C-4a), 120.37 (4°, C-8), 122.56 (4°, C-3'), 126.11 (3°, C-5), 140.61 (3°, C-2'), 150.94 (4°, C-4), 151.69 (4°, C-8a), 156.63 (4°, C-2), 159.48 (4°, C-7), 165.91 (4°, C-4'), 201.24 (4°, 8-COCH ₂ CH ₂ CH ₃).		

 Table-2

 Elemental Analysis and Spectral Data of Synthesized Compounds

Table-2 (Con	ntinued)
--------------	----------

Compound	Elemental analysis		UV, IR, ¹ H, ¹³ C NMR and Mass spectral data
2g	C, 69.27; H, 4.43	C, 69.23; H, 4.43.	IR: 2952, 1735, 1717, 1686, 1599, 1509, 1495, 1437 cm ⁻¹ . δ_{H} : 3.68 (sharp s, 3H, 3'-CO ₂ Me), 4.72 (broad dd, 2H, J = 3.8 Hz, 2Hz, 1'-H), 5.74 (dt, 1H, J = 16.0 Hz, 2.1 Hz, 3'-H), 6.25 (d, 1H, J = 9.0 Hz, 3-H), 6.85 (dt, 1H, J = 16.0 Hz, 3.8 Hz, 2'-H), 6.87
2h	C, 69.81; H, 4.82	C, 69.83; H, 4.79.	(d, 1H, J = 9.0 Hz, 6-H), 7.43 (t, 2H, J = 7.0 Hz, 3"-H and 5"-H), 7.53 (d, 1H, J = 9.0 Hz, 5-H), 7.60 (broad t, 1H, J = 7.0 Hz, 4"-H) 7.66 (d, 1H, J = 9.0 Hz, 4-H), 7.84 (broad d, 2H, J = 7.2 Hz, 2"-H and 6"-H). IR: 2947, 1723, 1675, 1613, 1568 cm ⁻¹ . δ_{H} : 2.42 (sharp s, 3H, 4-CH ₃), 3.68 (sharp s, 3H, 3'-CO ₂ Me), 4.74 (broad dd, 2H, J = 3.8 Hz, 2.1 Hz, 1'-H), 5.76 (dt, 1H, J = 15.0 Hz, 2.1 Hz, 3'-H), 6.14 (s, 1H, 3-H), 6.85 (broad d, 1H, J = 15.0 Hz, 2'-H), 6.89 (d, 1H, J = 9.0 Hz, 6-H), 7.45 (t, 2H, J = 7.5 Hz, 3"-H and 5"-H), 7.56 (broad t, 1H, J = 7.0 Hz, 4"-H), 7.66 (d, 1H, J = 9.0 Hz, 5-H), 7.84 (broad d, 2H, J = 7.2 Hz, 2"-H and 6"-
3a	С, 67.62; Н, 4.27	C, 67.60; H, 4.25.	H). δ_{C} : 51.50 (1°, 3'-CO ₂ CH ₃), 67.59 (2°, C-1'), 108.98 (3°, C-6), 113.74 (4°, C-4a), 114.62 (3°, C-3), 118.11 (4°,C-8), 122.35 (4°, C-3'), 128.70 (3°, 4"-C), 129.39 (3°, C-5), 129.72 (3°, 2"-C and 6"-C), 133.84 (3°, 3"-C and 5"-C), 137.16 (4°, Ph-C), 140.51 (3°, C-2'), 142.58 (3°, C-4), 158.87 (4°, C-2), 159.32 (4°, C-7), 152.33 (4°, C-8a), 165.92 (4°, C-4'), 191.36 (4°, 8-COPh). IR: 3094, 2953, 1736, 1637, 1610, 1578, 1477, 1458, 1397 cm ⁻¹ . δ_{H} : 2.62 (s, 3H, 9-CH ₃), 3.82 (s, 3H, 12-CO ₂ Me), 6.36 (d, 1H, J = 9.0 Hz, 3-H), 6.51 (d, 1H, J = 15.0 Hz, 12-H), 7.32 (d, 1H, J = 9.0 Hz, 6-H), 7.39 (d, 1H, J = 9.0 Hz, 5-H), 7.60 (d, 1H, J = 15.0 Hz, 11-H) 7.76 (d, 1H, J = 9.0 Hz, 4-H). δ_{C} : 9.93 (1°, 9-CH ₃), 51.71 (1°, 12-CO ₂ CH ₃), 108.42 (3°, C-6), 113.01 (4°, C-4a), 114.22 (3°, C-3), 118.38 (3°, C-12), 118.48 (4°, C-8), 119.90 (4°, C-9), 125.82 (3°, C-5), 128.43 (3°, C-11), 144.39 (3°, C-4), 149.38 (4°, C-8a), 150.04 (4°, C-10), 157.04 (4°, C-2), 160.00 (4°, C-7), 166.95 (4°, C-13). <i>m</i> /z 284 (100, M ⁺), 269 (2.7, M ⁺ -CH ₃), 253 (47.2, M ⁺ -OCH ₃), 225 (30, M ⁺ -COOCH ₃), 197 (11.8.
3b	C, 68.41; H, 4.74	C, 68.45; H, 4.73.	$ \begin{split} & M^* \text{-COOCH}_3\text{-CO}, 141 \ (10.9), 115 \ (11.8). \\ & \text{IR: } 3090, 2953, 1739, 1637, 1600, 1576, 1439, 1397 \ \text{cm}^{-1}. \\ & \delta_{\text{H}}: 2.49 \ (\text{s}, 3\text{H}, 4\text{-CH}_3), 2.66 \ (\text{s}, 3\text{H}, 9\text{-CH}_3), 3.84 \ (\text{s}, 3\text{H}, 12\text{-CO}_2\text{Me}), 6.27 \ (\text{s}, 1\text{H}, 3\text{-H}), 6.64 \ (\text{d}, 1\text{H}, \text{J} = 15.0 \ \text{Hz}, 12\text{-H}), 7.36 \ (\text{d}, 1\text{H}, \text{J} = 9.0 \ \text{Hz}, 5\text{-H}), 7.64 \ (\text{d}, 1\text{H}, \text{J} = 15.0 \ \text{Hz}, 11\text{-H}). \end{split} $
3c	C, 68.46; H, 4.69	C, 68.45; H, 4.73.	$ \begin{array}{l} m/z \ 298 \ (100, M^{+}), 267 \ (34.5, M^{+}-OCH_3), 239 \ (24.5, M^{+}-\dot{COOCH}_3), 211 \ (9.1, M^{+}-CO-\dot{COOCH}_3). \\ \mathrm{IR}: 2953, 1720, 1698, 1611, 1570, 1492, 1434, 1408 \ \mathrm{cm}^{-1}. \\ \delta_{H^{:}} \ 1.40 \ (t, 3H, J = 7.2 \ Hz, 9-CH_2CH_3), 3.08 \ (q, 2H, J = 7.5 \ Hz, 9-CH_2CH_3), 3.85 \ (s, 3H, 12-CO_2Me), 6.41 \ (d, 1H, J = 9.5 \ Hz, 3-H), 6.58 \ (d, 1H, J = 15.0 \ Hz, 12-H), 7.38 \ (d, 1H, J = 8.5 \ Hz, 6-H), 7.44 \ (d, 1H, J = 8.5 \ Hz, 5-H), 7.66 \ (d, 1H, J = 15.0 \ Hz, 11-H), 7.81 \ (d, 1H, J = 9.0 \ Hz, 4-H). \\ \delta_{C^{:}} \ 15.59 \ (1^{\circ}, 9-CH_2CH_3), 17.97 \ (2^{\circ}, 9-CH_2CH_3), 51.71 \ (1^{\circ}, 12-CO_2CH_3), 108.08 \ (3^{\circ}, C-6), 112.77 \ (4^{\circ}, C-4a), 114.12 \ (3^{\circ}, C-1), 118.18 \ (3^{\circ}, C-12), 123.04 \ (4^{\circ}, C-8), 125.97 \ (3^{\circ}, C-5), 126.48 \ (4^{\circ}, C-9), 128.47 \ (3^{\circ}, C-11), 144.25 \ (4^{\circ}, C-10), 144.35 \ (3^{\circ}, C-4), 148.70 \ (4^{\circ}, C-8a), 157.15 \ (4^{\circ}, C-2), 160.30 \ (4^{\circ}, C-7), 167.14 \ (4^{\circ}, C-13). \\ m/z \ 298 \ (100, M^{+}), 283 \ (10.9, M^{+}-CH_3), 267 \ (23.6, M^{+}-OCH_3), 251 \ (7.27, M^{+}-OCH_3-CH_3-H), 238 \ (54.5, M^{+}-OCH_3-C_2H_5), 223 \ (37.2, M^{+}-COOCH_3-C_3H_5), 126 \ (23.6, M^{+}-coumarin), 139 \end{array}$
3d	C, 69.21; H, 5.19	C, 69.23; H, 5.16.	(29.1), 128 (25.5), 115 (14.1), 91 (22.3, +CH ₂ Ph), 69 (20.9), 55 (20). IR: 3047, 2976, 1734, 1654, 1607, 1570, 1458, 1438, 1391 cm ⁻¹ . UV: 383.5 (4.36), 315 (4.24), 269 (4.23). δ_{H} : 1.38 (t, 3H, J = 7.2 Hz, 9-CH ₂ CH ₃), 2.49 (s, 3H, 4-CH ₃), 3.07 (q, 2H, J = 7.0 Hz, 9-CH ₂ CH ₃), 3.83 (s, 3H, 12-CO ₂ Me), 6.27 (s, 1H, 3-H), 6.55 (d, 1H, J = 15.0 Hz, 12-H), 7.37 (d, 1H, J = 9.0 Hz, 6-H), 7.57 (d, 1H, J = 9.0 Hz, 5-H), 7.64 (d, 1H, J = 15.0 Hz, 11-H). δ_{C} : 15.59 (1°, 9-CH ₂ CH ₃), 17.95 (2°, 9-CH ₂ CH ₃), 19.42 (1°, 4-CH ₃), 51.82 (1°, 12-CO ₂ CH ₃), 108.07 (3°, C-6), 112.79 (3°, C-3), 114.72 (4°, C-4a), 117.55 (4°, C-8), 117.99 (3°, C-12), 122.61 (3°, C-5), 126.68 (4°, C-9), 128.41 (3°, C-11), 148.55 (4°, C-8a), 148.91 (4°, C-4), 153.27 (4°, C-10), 156.97 (4°, C-2), 160.19 (4°, C-7), 167.08 (4°, C-13).
Зе	C, 69.26; H, 5.14	C, 69.23; H, 5.16.	[M_{1} + Π_{1} at m/z 515.1, [M_{1} + Na] ⁺ at m/z 555.1 IR: 3070, 2962, 1735, 1654, 1617, 1577, 1483, 1434, 1403 cm ⁻¹ . UV: 324 (4.20), 221 (4.27). δ_{H} : 1.00 (t, 3H, J = 7.5 Hz, 9-CH ₂ CH ₂ CH ₂ CH ₃), 1.80 (sextet, 2H, J = 7.5 Hz, 9-CH ₂ CH ₂ CH ₃), 2.99 (t, 2H, J = 7.5 Hz, 9-CH ₂ CH ₂ CH ₂ OH ₃), 3.83 (s, 3H, 12-CO ₂ Me), 6.37 (d, 1H, J = 9.0 Hz, 3-H), 6.54 (d, 1H, J = 15.0 Hz, 12-H), 7.33 (d, 1H, J = 9.0 Hz, 6-H), 7.40 (d, 1H, J = 9.0 Hz, 5-H), 7.60 (d, 1H, J = 15.0 Hz, 11-H), 7.76 (d, 1H, J = 9.0 Hz, 4-H). δ_{C} : 13.56 (1°, 9-CH ₂ CH ₂ CH ₃), 23.86 (2°, 9-CH ₂ CH ₂ CH ₃), 26.25 (2°, 9-CH ₂ CH ₂ CH ₃), 51.73 (1°, 13-CO ₂ CH ₃), 108.45 (3°, C-6), 113.83 (4°, C-4a), 114.22 (3°, C-3), 118.04 (3°, C-12), 118.45 (4°, C-8), 124.72 (4°, C-9), 125.84 (3°, C-5), 128.57 (3°, C-11), 144.07 (3°, C-4), 149.49 (4°, C-8a), 149.74 (4°, C-10), 157.21 (4°, C-2), 159.87 (4°, C-7), 166.99 (4°, C-13). [M-H] ⁺ at m/z 311.1 [M+NH ₄] ⁺ at m/z 329.3

Compound	Elemental analysis	UV, IR, ¹ H, ¹³ C NMR and Mass spectral data
3f	C. 69.89: H. C. 69.93: H.	IR: 3090, 2964, 1736, 1666, 1605, 1570, 1391 cm ⁻¹ .
	5.58 5.56.	UV: 323 (4.33), 224.5 (4.25).
		$\delta_{\rm H}$: 1.01 (t, 3H, J = 7.5 Hz, 9-CH ₂ CH ₂ CH ₃), 1.80 (sextet, 2H, J = 7.5 Hz, 9-CH ₂ CH ₂ CH ₃), 2.49 (s,
		$3H, 4-CH_3$, 3.02 (t, $2H, J = 7.5 Hz, 9-CH_2CH_2CH_3$), 3.83 (s, $3H, 12-CO_2Me$), 6.27 (s, $1H, 3-H$),
		6.55 (d, 1H, J = 15.0 Hz, 12-H), 7.37 (d, 1H, J = 9.0 Hz, 6-H), 7.56 (d, 1H, J = 9.0 Hz, 5-H), 7.62
		(d, 1H, J = 15.0 Hz, 11-H).
		δ _c : 13.37 (1°, 9-CH ₂ CH ₂ CH ₃), 19.51 (1°, 4-CH ₃) 23.95 (2°, 9-CH ₂ CH ₂ CH ₃), 26.32 (2°,
		9-CH2CH2CH3), 51.74 (1°, 12-CO2CH3), 108.07 (3°, C-6), 113.03 (3°, C-3), 114.92 (4°, C-4a),
		118.20 (3°, C-12), 118.37 (4°, C-8), 122.56 (4°, C-5), 125.11 (4°, C-9), 128.71 (3°, C-11), 148.71
		(4°, C-4), 149.48 (4°, C-8a), 154.01 (4°, C-10), 157.19 (4°, C-7), 157.80 (4°, C-2), 167.08 (4°,
		C-13).
		$[M+H]^+$ at m/z 327.2, $[M+Na]^+$ at m/z 349.2
3g	С, 72.81; Н, С, 72.83; Н,	IR: 2952, 1734, 1604, 1419 cm ⁻¹ .
	4.11 4.07.	δ_{H} : 3.79 (s, 3H, 12-CO ₂ Me), 6.35 (d, 1H, J = 9.5 Hz, 3-H), 6.67 (d, 1H, J = 15.0 Hz, 12-H), 7.44
		(d, 1H, J = 9.0 Hz, 6-H), 7.46 (t, 2H, J = 5.0 Hz, 3'-H and 5'-H), 7.47 (d, 1H, J = 15.0 Hz, 11-H),
		7.50 (broad t, 1H, J = 5.1 Hz, 4'-H), 7.52 (broad d, 2H, J = 5.1 Hz, 2'-H and 6'-H), 7.59 (d, 1H, J =
		9.0 Hz, 5-H), 7.76 (d, 1H, J = 9.5 Hz, 4-H)
		$\delta_{\rm C}$: 51.71 (1°, 12-CO ₂ CH ₃), 108.54 (3°, C-6), 114.26 (4°, C-4a), 114.75 (3°, C-3), 118.3 (3°,
		C-12), 120.20 (3°, C-5), 125.15 (4°, C-8), 126.23 (4°, C-4), 126.23 (3°, 4'-C), 128.47 (3°, C-11),
		128.92 (3°, 2'-C and 6'-C), 129.67 (4°, C-9), 129.78 (3°, 3'-C and 5'-C), 143.84 (4°, Ph-C), 149.77
		(4°, C-8a), 153.32 (4°, C-10), 157.09 (4°, C-7), 159.44 (4°, C-2), 166.77 (4°, C-13).
21		$[M+H]^+$ at m/z 347.2, $[M+Na]^+$ at m/z 369.3
Sh	C, /3.31; H, 4.49 C, /3.33;	IK: 2927 , 1736 , 1617 , 1423 , 1391 cm ² .
	H, 4.48.	UV: 394 (4.46), 382 (4.46), 341 (4.46), 324 (4.46), 237 (4.39).
		$0_{\rm H}^2$ 2.03 (s, 5n, 4-Cn ₃), 5.81 (s, 5n, 12-CO ₂ Me), 0.25 (s, 1n, 5-n), 0.08 (u, 1n, J = 13.7 nz, 12 {\rm Hz}), 7.47 (d, 11 {\rm Hz} = 8.7 {\rm Hz}, 6 {\rm Hz}), 7.51 (t, 21 {\rm Hz} = 6.0 {\rm Hz}, 21 {\rm Hz}, 14 {\rm Hz}), 7.52 (d, 11 {\rm Hz})
		$12-n_{1}$, 7.47 (u, $1n_{1}$, $J = 6.7$ n_{2} , $0-n_{1}$, 7.51 (l, $2n_{1}$, $J = 0.0$ n_{2} , $5-n_{1}$ and $5-n_{1}$, 7.52 (u, $1n_{1}$, $J = 15.9$ μ_{2} , 11 μ_{1} , 7.60 (broad t 11 μ_{1} , $1-6.2$ μ_{2} , 2^{1} μ_{1} and 6^{1} μ_{1})
		$7.64 (d 1H I - 8.7 H_{2} 5 H)$
		$3 \cdot 19 49 (1^{\circ} A CH) = 5.7 Hz, 5-H).$
		(2, 1) $(1, 1)$ $(1, 1)$ $(1, 1)$ $(2, 2)$ $(2, 1)$ $(1, 1)$ $(2, 2)$ $(2, 1)$ $(1, 1)$ $(2, 2)$ $(2, 1)$ $(1, 1)$ $(2, 2)$ $(2, 1)$ $(1, 1)$ $(2, 2)$ $(2, 1)$ $(2, 2)$ $(2, 1)$ $(2, 2)$ $($
		129.75 (3° 4'-C) 130.39 (3° 2'-C and 6'-C) 130.52 (3° 3'-C and 5'-C) 143.33 (4° Ph-C) 148.90
		$(4^{\circ} C-4)$ 149 47 $(4^{\circ} C-8a)$ 152.87 $(4^{\circ} C-10)$ 156.78 $(4^{\circ} C-7)$ 159.71 $(4^{\circ} C-2)$ 166.88 $(4^{\circ} C-7)$
		C-13).
		$[M+H]^+$ at m/z 361.2, $[M+Na]^+$ at m/z 383.2

Table-2 (Continued)

moiety encourages further study of such rearrangement and synthesis of more furano and pyranocoumarins by varying substituents at the 8- position and also on electron deficient allyloxy moiety of the coumarin derivatives.

EXPERIMENTAL

All melting points were determined in open capillaries and are uncorrected. IR spectra were recorded in KBr with Perkin-Elmer 883-IR, and RXI FT IR spectrophotometers. The UV spectra were measured in 95% ethanol using Hitachi U 2000 and Lamda 20 ELMER spectrophotometer. The elemental analyses were carried out in Perkin Elmer 240C elemental analyzer. The ¹H NMR and ¹³C NMR spectra were recorded in Bruker AV300 supercon NMR spectrometer operating at 300.13 MHz for proton and 75.47 MHz for carbon using CDCl₃ as a solvent and TMS as an internal standard. Mass spectra were recorded on Finnigan Mat 1020 C, Shimadzu Model GEMS QP1000A, LC-MS MS Q-TOF-micro spectrometers and Q TRAP LC/MS/MS system operative at 70 eV. The column chromatographic separation and filtration were performed with silica gel (mesh size 60-120) prepared by Glaxo (India) Ltd and Merck (India) Ltd. Petroleum ether used had a boiling point 60-80 °C.

Synthesis of crotonyloxy ether 2a,b. 7-Hydroxy-8-acetylcoumarin 1a and 4-methyl-7-hydroxy-8-acetylcoumarins 1b (2.5 mmol) dissolved in dry acetone (50 mL) was treated with methyl γ-bromocrotonate (0.3 mL, 2.5 mmol) and refluxed in the presence of anhydrous K_2CO_3 (0.5 g, 3.6 mmol) for 8 h. Acetone was distilled off and the residual content was treated with water and acidified with cold 4 *N* HCl (15 mL). The organic part of the mixture was extracted out with chloroform (2x50 mL) followed by successive washing of combined chloroform layer with saturated brine solution (15 mL), saturated sodium bicarbonate solution (2×15 mL) and finally with saturated brine solution (3×15 mL). The chloroform layer was dried over anhydrous sodium sulphate for 30 minutes. Filtration and solvent removal afforded crude solid mass, which crystallized from ethyl acetate as white needles, yield (65-75%).

Synthesis of crotonyloxy ether 2c-h. To a solution of 7hydroxy-8-ketocoumarins and 4-methyl-7-hydroxy-8-ketocoumarins 1c-h (2.5 mmol) in dry acetone (15 mL) were added methyl γ -bromocrotonate (0.3 mL, 2.5 mmol) and anhydrous K₂CO₃ (0.5 g, 3.6 mmol). The mixture was kept at room temperature for 12 h. Acetone was then removed by evaporation and the content was treated with water to dissolve K₂CO₃. The organic part of the mixture was extracted with chloroform (2x50 mL) and acidified with cold 4 *N* HCl (15 mL). The chloroform layer was subsequently washed respectively with saturated brine solution (20 mL), saturated sodium bicarbonate solution (20 mL) and brine solution (3×20 mL). Drying of the organic layer over anhydrous sodium sulphate for 30 minutes, and solvent removal afforded a solid yield (64-72%). Synthesis of angular furanocoumarins 3a,b. Crotonyloxy ethers of 7-hydroxy-8-acetylcoumarin 3a and 4-methyl-7hydroxy-8-acetylcoumarin 3b (2.5 mmol) dissolved in PhNEt₂ (20 mL) was refluxed for 8 h. Excess PhNEt₂ was distilled off and the residual content was treated with water and acidified with cold 2 N HCl (15 mL). The organic part of the mixture was extracted out with chloroform (2x50 mL) followed by successive washing of combined chloroform layer with saturated brine solution (15 mL), saturated sodium bicarbonate solution $(2\times15 \text{ mL})$ and finally with saturated brine solution $(3\times15 \text{ mL})$. The chloroform layer was dried over anhydrous sodium sulphate for 30 minutes. Filtration and solvent removal afforded crude oil, which was column chromatographed on silica gel. The angular furanocoumarins 2a,b were obtained on elution with petroleum ether and ethyl acetate (4:1) and crystallized from ethyl acetate as white needles, yield (40-41%).

Synthesis of angular furanocoumarins 3c-h. 7-Hydroxy-8ketocoumarins and 4-methyl-7-hydroxy-8-ketocoumarins 1c-h (2.5 mmol) dissolved in dry acetone (50 mL) was treated with methyl γ -bromocrotonate (0.3 mL, 2.5 mmol) and refluxed in the presence of anhydrous K₂CO₃ (0.5 g, 3.6 mmol) for 8 h. Acetone was distilled off and the residual content was treated with water and acidified with cold 4 *N* HCl (15 mL). The organic part of the mixture was extracted out with chloroform (2x50 mL) followed by successive washing of combined chloroform layer with saturated brine solution (15 mL), saturated sodium bicarbonate solution (2×15 mL) and finally with saturated brine solution (3×15 mL). The chloroform layer was dried over anhydrous sodium sulphate for 30 minutes. Filtration and solvent removal afforded crude solid mass, which crystallized from ethyl acetate as white needles, yield (62-82%).

Acknowledgment. Sincere thanks are accorded to the Department of Chemistry, J.U. for IR spectra, CAS Instrumentation Centre, Department of Chemistry, C.U. for various NMR spectra, IICB, Kolkata 700032 for mass spectral data and IACS, Kolkata 700032 for elemental analyses.

REFERENCES

[1a] Murray, R. D. H. Fortschritte der Chem. Org. Naturstoffe; Herz, W.; Kirby, G. W.; Steiglich, W. C., Eds.; Springer-Verlag: Wien, 1978; Vol. 35, p.199; b) Murray, R. D. H.; Mendez. J; Brown. S. A. The Natural Coumarins, Occurrence, Chemistry and Biochemistry; John Wiley & Sons Inc.: NY, 1982. c) Murray, R. D. H. Fortschritte der Chem. Org. Naturstoffe; Herz, W.; Kirby, G. W.; Steiglich, W. C., Eds.; Springer-Verlag: Wien, 1991; Vol. 58, p. 83.

[2] Lee, Y. R. Tetrahedron 1995, 51, 3087.

[3] Parrish, J.A.; Fitzpatrick, T. B.; Tanenbaum, L. N. Engl. J. Med. 1974, 291, 1207.

[4] Scott, B. R.; Pathak, M. A.; Mohn, G. R. *Mutat. Res.* **1976**, 39, 29.

[5] Regan, J. D.; Parrish, J. A. *The Science of Photomedicine*; Plenum Press: NewYork, 1982.

[6] Bordin, F.; Dall'Acqua, F.; Guitto, A. *Pharmacol. Ther.* **1991**, *52*, 331 and references cited therein.

[7] Berumbaum, M. *Ecology* **1981**, 62, 1254.

[8] Stanely, W. C.; Jurd, L. J. Agr. Food Chem. 1971, 19, 1106.

[9] Hudson, J. B.; Fong, R.; Altramarino, M.; Towes, G. H. Planta Medica 1987, 536.

[10] Ashwood-Smith, M. J.; Poulton, G. A.; Barker, M.; Mildenberger, M. *Nature* **1980**, 285, 407.

[11] Aneja, R.; Mukerjee, S. K.; Seshadri, T. R. Tetrahedron 1958, 4, 256.

[12] Wolff, W. D.; McCallum, J. S.; Kunng, F. A. J. Am. Chem. Soc. **1988**, *110*, 7419.

[13a] Zubia, E.; Luis, F. R.; Massanet, G. M.; Collado, I. G. *Tetrahedron* **1992**, 48, 4239; b) Dufflay, R. P.; Stevenson, R. *Synth.Commun.* **1978**, 8, 175.

[14] Mali, R. S.; Pandhare, N. A.; Sindkhedkar, M. D. Tetrahedron Lett. 1995, 36, 7109.

[15] Chatterjee, R. M.; Sen, K. J. Indian Chem. Soc. 1967, 44, 140.

[16] Avula, P.; Krupadanam, G. L. D.; Srimannarayana, G. Bull. Chem. Soc. Jpn. **1992**, 65, 1191 and references cited there in.

[17a] Dutta, L. N.; Sinha, N. C.; Sarkar, A. K. Indian J. Chem.
 1991, 30B, 1112; b) Dutta, L. N.; Sinha, N. C.; Sarkar, A. K. Indian J. Chem.
 1988, 27B, 801.

[18a] Dutta, L. N.; Bhattacharyya, M.; Sarkar, A. K. Can. J. Chem.
 1995, 73, 1556; b) Dutta, L. N.; Bhattacharyya, M. J. Indian Chem. Soc.
 2003, 80, 953.